SKIN CANCER IMAGE DETECTION SYSTEM USING THE CONVOLUTIONAL NEURAL NETWORK MODEL
##plugins.themes.academic_pro.article.main##
Abstract
The development of science and technology (IPTEK) in the current era is growing very rapidly in various fields such as industry, education, especially the health sector. Many technologies can be used, one of which is artificial intelligence technology. This study aims to detect skin cancer images using CNN so that they can be efficient and precise. This research method uses the convolutional neural network (CNN) method, namely image processing, the development of a multilayer perceptron (MLP), in which the neurons of the data are propagated in two dimensions. Because this method has very high accuracy compared to the fuzzy k-nearest neighbors. The results of this study are that there are 7 classes of skin cancer images including actinic keratosis, basal cell carcinoma, dermatofibroma, benign keratosis, melanocytic nevi, vascular lesions and melanoma. From the results of testing the 7 classes using the convolutional neural network (CNN) method with a very high accuracy rate of 99%, 96%, 98%, 99%, 100%, 99% and 96%, respectively. With the conclusion that using the convolutional neural network (CNN) method produces an average accuracy of 98% compared to the Mobilnetv2, Resnet50 and VGG16 models, which means that the CNN model is proven to be more accurate. So it is hoped that this detection system can be applied as a skin cancer detection system for the world of health.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
References
- B. Niam, Q. Qirom, and D. Sucipto, “Deteksi Kangker Kulit Dengan Menggunakan Metode Sudut Harris,” Power Elektron. J. Power Elektron., vol. 9, no. 1, pp. 1–3, 2020, doi: 10.30591/polektro.v9i1.1791.
- S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
- P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, pp. 12–21, 2020.
- A. O. P. Dewi, “Kecerdasan Buatan sebagai Konsep Baru pada Perpustakaan,” Anuva J. Kaji. Budaya, Perpustakaan, dan Inf., vol. 4, no. 4, pp. 453–460, 2020, doi: 10.14710/anuva.4.4.453-460.
- S. Wilvestra, S. Lestari, and E. Asri, “Studi Retrospektif Kanker Kulit di Poliklinik Ilmu Kesehatan Kulit dan Kelamin RS Dr. M. Djamil Padang Periode Tahun 2015-2017,” J. Kesehat. Andalas, vol. 7, no. Supplement 3, pp. 47–49, 2018.
- N. N. Faruk, Muhammad, “Telematika Klasifikasi Kanker Kulit Berdasarkan Fitur Tekstur , Fitur Warna Citra Menggunakan SVM dan KNN,” Telematika, vol. 13, no. 2, pp. 100–109, 2020, [Online]. Available: https://ejournal.amikompurwokerto.ac.id/index.php/telematika/article/view/987.
- A. W. S. Teresia R. Savera, Winsya H. Suryawan, “Deteksi Dini Kanker Kulit Menggunakan K-Nn Dan Convolutional Neural Network,” Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, pp. 1–212, 2020, doi: 10.25126/jtiik.202072602.
- F. L. D. Cahyanti, W. Gata, and F. Sarasati, “Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit,” J. Ilm. Univ. Batanghari Jambi, vol. 21, no. 1, p. 259, 2021, doi: 10.33087/jiubj.v21i1.1189.
- N. Khasanah, R. Komarudin, N. Afni, Y. I. Maulana, and A. Salim, “Klasifikasi Kanker Kulit Menggunakan Algoritma Random Forest,” Sisfotenika, vol. 11, no. 2, p. 137, 2021, doi: 10.30700/jst.v11i2.1122.
- R. Yohannes and M. E. Al Rivan, “Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM,” J. Algoritm., vol. 2, no. 2, pp. 133–144, 2022, doi: 10.35957/algoritme.v2i2.2363.
- D. A. Nurlitasari, R. Magdalena, and R. Y. N. Fu’adah, “Analisis Performansi Sistem Klasifikasi Kanker Kulit Menggunakan Convolutional Neural Network,” J. Electr. Syst. Control Eng., vol. 5, no. 2, pp. 91–99, 2022, doi: 10.31289/jesce.v5i2.5691.
- Luqman Hakim, Z. Sari, and H. Handhajani, “Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 379–385, 2021, doi: 10.29207/resti.v5i2.3001.
- Sofia Saidah, I. P. Y. N. Suparta, and E. Suhartono, “Modifikasi Convolutional Neural Network Arsitektur GoogLeNet dengan Dull Razor Filtering untuk Klasifikasi Kanker Kulit,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 148–153, 2022, doi: 10.22146/jnteti.v11i2.2739.
- K. Ritonga, “Sistem Pakar Mendiagnosa Penyakit Kanker Kulit Melanoma Menggunakan Metode Case Based Reasoning,” J. Inf. dan Teknol. Ilm., vol. 7, no. 3, pp. 247–252, 2020.
- R. AGUSTINA, R. MAGDALENA, and N. K. C. PRATIWI, “Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 2, p. 446, 2022, doi: 10.26760/elkomika.v10i2.446.
- N. Nurkhasanah and M. Murinto, “Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network,” Sainteks, vol. 18, no. 2, p. 183, 2022, doi: 10.30595/sainteks.v18i2.13188.