Fryda Fatmayati
Umbar Riyanto
Jefri Rahmadian
Omar Pahlevi


IT maintenance is important for a company because these activities are carried out to maintain and support the optimal performance of a company's IT systems and infrastructure. Generally, selecting an IT maintenance vendor is done by collecting vendor data and then evaluating it based on the desired criteria. This, of course, results in the time it takes to make a choice and makes it difficult to determine the best option. If you choose the wrong IT maintenance vendor, it will result in disrupting the company's stability. This research was conducted with the aim of developing a decision support system that can be used to determine the IT maintenance vendor that best suits their needs and preferences using the WASPAS (Weighted Aggregated Sum Product Assessment) approach. This method is used to determine the best option through weighted addition and multiplication, producing a final value that reflects the extent to which each option can meet the specified criteria. From the existing case studies, the best alternative was obtained, namely: Microsis (A4) got a preference value of 0.8769, followed by ICT Canopy (A1) with a preference value of 0.8613, Pillar IT (A2) with a preference value of 0.8408, Indocom Niaga (A5) with a preference value of 0.8180, and Sasana Digital (A3) with a preference value of 0.7389. The usability test carried out received a score of 88%, which indicates that the system is suitable for use.


How to Cite


  1. R. Nugraha, A. E. Nugraha, and R. A. Darajatun, “Sistem Informasi Penjadwalan Maintenance Menggunakan Metode Watefall Berbasis Desktop PT.Pindodeli 2 Pulp And Mills,” J. Ilm. Wahana Pendidik., vol. 8, no. 15, pp. 499–509, 2022.
  2. F. Sembiring, Y. Yesi, and N. D. Arianti, “Maintenance Sistem Informasi Dengan Metode RCM di PT Pratama Abadi Industri (JX),” JURSISTEKNI (Jurnal Sist. Inf. dan Teknol. Informasi), vol. 2, no. 3, pp. 25–35, 2020.
  3. S. Bandyopadhyay, Decision Support System: Tools and Techniques. Florida: CRC Press, 2023.
  4. R. Rusliyawati and R. Nuraini, “Pendukung Keputusan Pemilihan Vendor IT Menggunakan Metode Perbandingan Eksponensial (MPE) Sistem,” Insearch (Information Syst. Res. J., vol. 2, no. 2, pp. 90–98, 2022.
  5. A. Rifqi and R. T. Aldisa, “Implementasi Sistem Pendukung Keputusan dalam Pemilihan Vendor IT Menerapkan Metode Weighted Product ( WP ),” RESOLUSI Rekayasa Tek. Inform. dan Inf., vol. 4, no. 1, pp. 2–8, 2023.
  6. A. Apriyaningsih, “Sistem Pendukung Keputusan Pemilihan Vendor Project Menerapkan Metode Analytical Hierarchy Process (AHP),” TIN Terap. Inform. Nusant., vol. 2, no. 9, pp. 542–550, 2022, doi: 10.47065/tin.v2i9.1309.
  7. N. Nugroho, “Decision Support System for Selection of Virtual Reality Head-Mounted Display Using the WASPAS Method,” J. Inf. Syst. Res., vol. 4, no. 3, pp. 811–819, 2023, doi: 10.47065/josh.v4i3.3272.
  8. T. A. Masangin, T. Widiastuti, and B. S. Djahi, “Sistem Pendukung Keputusan Pemilihan Tempat Kos Dengan Metode Weighted Agregated Sum Product Assesment (WASPAS) (Studi Kasus Kota Kupang Nusa Tenggara Timur),” J. Transform. (Informasi Pengemb. Iptek), vol. 17, no. 2, pp. 13–23, 2021.
  9. E. Y. Anggraeni, R. Renaldo, and T. Susilowati, “Decision Support System Determines The Quality of The House in Pringsewu District Using The WASPAS Method,” J. TECH-E, vol. 4, no. 2, pp. 16–21, 2021.
  10. H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters,” J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021, doi: 10.34288/jri.v4i1.293.
  11. R. D. Gunawan, R. Napianto, R. I. Borman, and I. Hanifah, “Penerapan Pengembangan Sistem Extreme Programming Pada Aplikasi Pencarian Dokter Spesialis di Bandar lampung Berbasis Android,” J. Format, vol. 8, no. 2, pp. 148–157, 2019.
  12. I. M. Pandiangan, M. Mesran, R. I. Borman, A. P. Windarto, and S. Setiawansyah, “Implementation of Operational Competitiveness Rating Analysis (OCRA) and Rank Order Centroid (ROC) to Determination of Minimarket Location,” Bull. Informatics Data Sci., vol. 2, no. 1, pp. 1–8, 2023.
  13. R. I. Borman, D. A. Megawaty, and A. Attohiroh, “Implementasi Metode TOPSIS Pada Sistem Pendukung Keputusan Pemilihan Biji Kopi Robusta yang Bernilai Mutu Ekspor (Studi Kasus: PT. Indo Cafco Fajar Bulan Lampung),” Fountain Informatics J., vol. 5, no. 1, pp. 14–20, 2020, doi: 10.21111/fij.v5i1.3828.
  14. P. E. P. Sulistyawan and S. Wibisono, “Pemanfaatan Metode Weighted Aggregated Sum Product Assesment Dalam Keputusan Pemilihan Personal Computer Untuk Kebutuhan Industri Game Developer,” J. Mahajana Inforamasi, vol. 7, no. 2, pp. 135–142, 2023.
  15. D. M. Pagan and M. Syahrizal, “Penerapan WASPAS Dalam Mendukung Keputusan Penerima Beasiswa Mahasiswa Berprestasi,” TIN Terap. Inform. Nusant., vol. 1, no. 1, pp. 8–13, 2020.
  16. A. Arisantoso, M. H. Somaida, M. Sanwasih, and M. I. Shalahudin, “Multi-Criteria Decision Making Using the WASPAS Method in Webcam Selection Decision Support Systems,” IJICS (International J. Informatics Comput. Sci., vol. 7, no. 1, pp. 1–10, 2023, doi: 10.30865/ijics.v7i1.6001.
  17. I. Ahmad, E. Suwarni, R. I. Borman, A. Asmawati, F. Rossi, and Y. Jusman, “Implementation of RESTful API Web Services Architecture in Takeaway Application Development,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022, pp. 132–137. doi: 10.1109/ICE3IS54102.2021.9649679.
  18. Y. Fernando, R. Napianto, and R. I. Borman, “Implementasi Algoritma Dempster-Shafer Theory Pada Sistem Pakar Diagnosa Penyakit Psikologis Gangguan Kontrol Impuls,” Insearch (Information Syst. Res. J., vol. 2, no. 2, pp. 46–54, 2022.
  19. H. Firdaus and A. Zakiah, “Implementation of Usability Testing Methods to Measure the Usability Aspect of Management Information System Mobile Application (Case Study Sukamiskin Correctional Institution),” I.J. Mod. Educ. Comput. Sci., vol. 5, pp. 58–67, 2021, doi: 10.5815/ijmecs.2021.05.06.
  20. I. Ahmad, Y. Rahmanto, R. I. Borman, F. Rossi, Y. Jusman, and A. D. Alexander, “Identification of Pineapple Disease Based on Image Using Neural Network Self-Organizing Map (SOM) Model,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022.