ANALISIS STATISIK PERBANDINGAN MANIPULASI SUARA DAN SUARA ASLI MENGGUNAKAN TEKNIK AUDIO FORENSIK

##plugins.themes.academic_pro.article.main##

Yasep Azzery

Abstract

Kejahatan digital yang semakin beragam menuntut Tim ahli forensik untuk meningkatkan pengetahuan dalam pengungkapan kasus didalam dunia digital. Teknik audio forensik merupakan bagian dari ilmu digital forensik, yang lebih fokus pada analisa suara serta berbagai manipulasi didalamnya yang harus dapat dibuktikan di persidangan. Salah satu tantangan yang dihadapi dalam mengungkap kejahatan melalui audio yaitu adanya manipulasi suara yang berbeda dengan suara sumber atau pelaku. Analisa yang dilakukan menggunakan rekaman suara laki-laki yang terdiri dari 20 kata dan dilakukan manipulasi dengan menaikkan speed audio sebesar 20%. Metode yang digunakan yaitu dengan membandingkan hasil analisa Picth, Formant, dan Spectogram dari suara asli dan suara yang dimanipulasi. Hasil analisis perbandingan satistik Pitch, formant, spectogram  menunjukkan bahwa terdapat perbedaan nilai dan range dari suara barang bukti dan suara subjek. Analisa statisik dilakukan dengan teknik One Way Annova menyatakan bahwa kedua suara rekaman tersebut Tidak Identik. Makalah ini diharapkan dapat menambah wawasan bagi Tim forensik untuk melakukan analisa lebih lanjut terhadap barang bukti yang sudah dimanipulasi.

##plugins.themes.academic_pro.article.details##

How to Cite
Azzery, Y. (2020). ANALISIS STATISIK PERBANDINGAN MANIPULASI SUARA DAN SUARA ASLI MENGGUNAKAN TEKNIK AUDIO FORENSIK. TEKNOKOM, 3(1), 29–33. https://doi.org/10.31943/teknokom.v3i1.50

References

  1. Jinhua Zeng et al., “Audio recorder forensic identification in 21 audio recorders,” in 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), Dec. 2015, pp. 153–157, doi: 10.1109/PIC.2015.7489828.
  2. T. Suwan, S. Jaiyen, and R. Wiangsripanawan, “Edited audio detection using ensemble learning,” in 2015 7th International Conference on Knowledge and Smart Technology (KST), Jan. 2015, pp. 71–74, doi: 10.1109/KST.2015.7051474.
  3. D. Renza, D. M. Ballesteros L., and C. Lemus, “Authenticity verification of audio signals based on fragile watermarking for audio forensics,” Expert Systems with Applications, vol. 91, pp. 211–222, Jan. 2018, doi: 10.1016/j.eswa.2017.09.003.
  4. T. Huang, X. Zhang, W. Huang, L. Lin, and W. Su, “A multi-channel approach through fusion of audio for detecting video inter-frame forgery,” Computers & Security, vol. 77, pp. 412–426, Aug. 2018, doi: 10.1016/j.cose.2018.04.013.
  5. Premjith B., N. Mohan, P. Poornachandran, and Soman K.P., “Audio Data Authentication with PMU Data and EWT,” Procedia Technology, vol. 21, pp. 596–603, 2015, doi: 10.1016/j.protcy.2015.10.066.
  6. E. Casey and T. R. Souvignet, “Digital transformation risk management in forensic science laboratories,” Forensic Science International, vol. 316, p. 110486, Nov. 2020, doi: 10.1016/j.forsciint.2020.110486.
  7. S. Park and C. Ha, “Determination of optimal experimental design for ANOVA gauge R&R using stochastic programming,” Measurement, vol. 156, p. 107612, May 2020, doi: 10.1016/j.measurement.2020.107612.
  8. T. B. Kumar, A. Panda, G. Kumar Sharma, A. K. Johar, S. K. Kar, and D. Boolchandani, “Taguchi DoE and ANOVA: A systematic perspective for performance optimization of cross-coupled channel length modulation OTA,” AEU - International Journal of Electronics and Communications, vol. 116, p. 153070, Mar. 2020, doi: 10.1016/j.aeue.2020.153070.
  9. Q. Liao and J. Li, “An adaptive reduced basis ANOVA method for high-dimensional Bayesian inverse problems,” Journal of Computational Physics, vol. 396, pp. 364–380, Nov. 2019, doi: 10.1016/j.jcp.2019.06.059.
  10. S. Camacho, D. M. Ballesteros L, and D. Renza, “A cloud-oriented integrity verification system for audio forensics,” Computers & Electrical Engineering, vol. 73, pp. 259–267, Jan. 2019, doi: 10.1016/j.compeleceng.2018.11.022.
  11. D. Avci, T. Tuncer, and E. Avci, “A new information hiding method for audio signals,” in 2018 6th International Symposium on Digital Forensic and Security (ISDFS), Mar. 2018, vol. 2018–Janua, pp. 1–4, doi: 10.1109/ISDFS.2018.8355361.
  12. A. Ross, S. Banerjee, and A. Chowdhury, “Security in smart cities: A brief review of digital forensic schemes for biometric data,” Pattern Recognition Letters, vol. 138, pp. 346–354, Oct. 2020, doi: 10.1016/j.patrec.2020.07.009.
  13. S. Saleem, F. Subhan, N. Naseer, A. Bais, and A. Imtiaz, “Forensic speaker recognition: A new method based on extracting accent and language information from short utterances,” Forensic Science International: Digital Investigation, vol. 34, p. 300982, Sep. 2020, doi: 10.1016/j.fsidi.2020.300982.
  14. Jihyun Park, Yongseok Seo, Wonyoung Yoo, and Youngho Suh, “Audio forensic marking for music streaming service,” in 2013 International Conference on ICT Convergence (ICTC), Oct. 2013, vol. 24, pp. 817–818, doi: 10.1109/ICTC.2013.6675487.
  15. G. Hua, G. Bi, and V. L. L. Thing, “On Practical Issues of ENF Based Audio Forensics,” IEEE Access, vol. 5, pp. 20640–20651, 2017.