MONITORING VEGETATION HARVEST OF COFFEE TREES USING KNN-CLUSTERING ALGORITHM

##plugins.themes.academic_pro.article.main##

Dwi Handoko
Nizamiyati Nizamiyati
Herlini Oktaria
Agus Mulyanto
Muhamad Brilliant

Abstract

Coffee is one of the plantation commodities spread throughout Indonesia. Coffee is the main commodity for export in Tanggamus Regency. The prediction of crop yields based on aerial photography is the main problem in this study, then there is no dataset of aerial imagery of coffee plantations that are specifically used for the purpose of determining coffee tree vegetation on coffee plantations so that farmers can find out which land is still overgrown by other plants. in addition to coffee trees and the possibility of making predictions for crop yields from aerial imagery of the coffee plantations, this research is also another urgency. This study is intended to build an intelligent model to detect the amount of coffee tree vegetation in a plantation using the KNN-Clustering segmentation algorithm. The image of the coffee tree was taken using a drone with a height of 50 m and an area of 0.25 ha. Preprocessing was carried out. The preprocessed image is called a dataset. After that, the segmentation process is carried out using the Region Growing method to form a black and white image. After Region Growing is done, then the image in Clustering uses the KNN-Clustering method to determine the color pattern of the image in the coffee plantation to distinguish the types of vegetation in the coffee plantation. From the results of KNN-Clustering, the area of coffee tree vegetation is obtained from a total of 0.25 ha of coffee plantation images.

##plugins.themes.academic_pro.article.details##

How to Cite
Handoko, D., Nizamiyati, N., Oktaria, H. ., Mulyanto, A. ., & Brilliant, M. . (2022). MONITORING VEGETATION HARVEST OF COFFEE TREES USING KNN-CLUSTERING ALGORITHM. TEKNOKOM, 6(1), 8–13. https://doi.org/10.31943/teknokom.v6i1.90

References

  1. M. FADLY, “FAKTOR-FAKTOR YANG MEMPENGARUHI PRODUKSI KOPI DI KABUPATEN BARRU (Studi Kasus di Desa Harapan Kecamatan Tanete RiajaKabupaten Barru),” Apr. 2021.
  2. A. Sektor Basis Sub Sektor Pertanian Terhadap Tenaga Kerja Sektor Pertanian Di Kabupaten Kudus, J. Arinda, and R. Retno Sugiharti, “Analisis Sektor Basis Sub Sektor Pertanian Terhadap Tenaga Kerja Sektor Pertanian Di Kabupaten Kudus,” J. Paradig. Multidisipliner, vol. 2, no. 1, May 2021, doi: 10.1210/.V2I1.59.
  3. F. Fachruddin, R. Fadhil, Syafriandi, and D. Dahlan, “Suitability analysis of scrubland for arabica and robusta coffee plants in Aceh Besar Regency,” IOP Conf. Ser. Earth Environ. Sci., vol. 644, no. 1, p. 012011, Jan. 2021, doi: 10.1088/1755-1315/644/1/012011.
  4. Brilliant, Muhamad, et al. "Land Cover Changes Detection Using Region Growing Segmentation." Journal of Physics: Conference Series. Vol. 1529. No. 2. IOP Publishing, 2020.
  5. A. Padmo, A. Masa, and H. Hamdani, “Klasifikasi Motif Citra Batik Menggunakan Convolutional Neural Network Berdasarkan K-means Clustering,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 4, pp. 1292–1301, Oct. 2021, doi: 10.30865/MIB.V5I4.3246.
  6. M. Simsek, B. Kantarci, and A. Boukerche, “Utility-Aware Legitimacy Detection of Mobile Crowdsensing Tasks via Knowledge-Based Self Organizing Feature Map,” IEEE Trans. Mob. Comput., 2021, doi: 10.1109/TMC.2021.3136236.
  7. N. Kaur, N. Nazir, and Manik, “A Review of Local Binary Pattern Based texture feature extraction,” pp. 1–4, Nov. 2021, doi: 10.1109/ICRITO51393.2021.9596485.
  8. “Utility-Aware Legitimacy Detection of Mobile Crowdsensing Tasks via Knowledge-Based Self Organizing Feature Map | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/abstract/document/9655485 (accessed Feb. 12, 2022).
  9. T. Tommy, R. Siregar, A. M. Elhanafi, and I. Lubis, “Implementasi Color Quantization pada Kompresi Citra Digital dengan Menggunakan Model Clustering Berdasarkan Nilai Max Variance pada Ruang Warna RGB,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 6, pp. 1099–1106, Nov. 2021, doi: 10.25126/JTIIK.2021863490.
  10. “Implementasi Locally Adaptive K-Nearest Neighbor Algorithm based on Discrimination Class (DC-LAKNN) pada Kasus Deteksi Fake Account Instagram | Kurniawan | Jurnal Infra.” https://publication.petra.ac.id/index.php/teknik-informatika/article/view/12025 (accessed Feb. 12, 2022).
  11. D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, Jul. 2020, doi: 10.33096/IJODAS.V1I2.13.
  12. “Landcover Quality Detection Using Segmentation And Content Base Image Retrieval Methods | Handoko | Proceeding International Conference on Information Technology and Business.” https://jurnal.darmajaya.ac.id/index.php/icitb/article/view/2076/1077 (accessed Jun. 22, 2022).
  13. R. WAHYUDI, A. Mursalin, and I. Sagala, “IMPLEMENTASI E-GOVERNMENT DI KEJAKSAAN TINGGI PROVINSI JAMBI,” Nov. 2020.
  14. Wulder, Michael A., et al. "Land cover 2.0." International Journal of Remote Sensing 39.12 (2018): 4254-4284.
  15. Homer, Collin, et al. "Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information." Photogrammetric Engineering & Remote Sensing 81.5 (2015): 345-354.

Most read articles by the same author(s)