ANALISIS PENGUJIAN TAN DELTA PADA TRANSFORMATOR ARUS DI GITET TASIKMALAYA BAY PENGHANTAR BANDUNG SELATAN-1

##plugins.themes.academic_pro.article.main##

Harris Rifqi Febrijanto
Rahmat Hidayat

Abstract

Current transformers are essential for substation protection. It converts large currents into smaller currents that are used for measurement and triggering protection systems. Errors in the conversion of electric current can lead to measurement inaccuracies and protection system failures. Improper maintenance and use can shorten the life of the transformer and also lead to earlier system failure. One of the tests applied is the tan delta test to determine the loss coefficient of the insulating material. A decrease in insulation quality increases the tan delta value. The capacitance value is also measured in the tan delta test. An increased capacitance value indicates the paper insulation has been damaged. Generally, damaged insulation causes a short circuit between capacitor layers which is characterized by an increase in capacitance value. By using the GST-Ground method with the Megger Delta 4110 measuring instrument, the tan delta results of the R, S, and T phases in the southern send bay of Bandung-1 GITET Tasikmalaya are 0.42%, 0.47%, and 0.45%. The results of independent calculations are phase R, S, T are 0.29%, 0.28% and 0.31%. From both results, the current transformer can be said to be feasible to operate because the tan delta value is below 1% which is the operational standard of the current transformer.

##plugins.themes.academic_pro.article.details##

How to Cite
Febrijanto, H. R. ., & Hidayat, R. (2022). ANALISIS PENGUJIAN TAN DELTA PADA TRANSFORMATOR ARUS DI GITET TASIKMALAYA BAY PENGHANTAR BANDUNG SELATAN-1. TEKNOKOM, 6(2), 86–95. https://doi.org/10.31943/teknokom.v6i2.143

References

  1. T. Isolasi, dan Eksitasi Rianti, M. Iqbal
  2. Arsyad, J. Teknik Elektro, and F. Teknik
  3. Universitas Tanjungpura Pontianak, “Studi
  4. Analisa Kelayakan Transformator Arus untuk
  5. Proteksi Sistem Tenaga Listrik berdasarkan
  6. Hasil Uji”.
  7. I. S. Wahyuni and K. Fahmi, “Pentingnya
  8. Qualitas Trafo Arus ( Current Transformer )
  9. Dengan Menerapkan Quality Plan Dalam
  10. Proses Assembly,” vol. 1, no. 1, pp. 31–38,
  11. G. Crotti et al., “Calibration of Current
  12. Transformers in distorted conditions,” J. Phys.
  13. Conf. Ser., vol. 1065, no. 5, 2018, doi:
  14. 1088/1742-6596/1065/5/052033.
  15. S. Bustamante, M. Manana, A. Arroyo, P.
  16. Castro, and A. Laso, “Dissolved Gas Analysis
  17. Equipment for Online Monitoring of
  18. Transformer Oil : A Review,” pp. 4–12, 2019,
  19. doi: 10.3390/s19194057.
  20. D. Almanda, “Analisis Pengujian Tangen
  21. Delta pada Bushing Trafo 150 / 20 KV 60 MVA
  22. di Gardu Induk Karet Lama,” vol. 5, no. 2, pp.
  23. –102.
  24. Sobhy et al., “Enhancement the Properties of
  25. Electrical Insulation for Current Transformer
  26. Using Nano-particles,” vol. 4, pp. 31–37,
  27. Z. Nadolny, “Determination of Dielectric
  28. Losses in a Power Transformer,” Energies,
  29. vol. 15, no. 3, 2022, doi:
  30. 3390/en15030993.
  31. K. A. Kulkarni, G. Engineering, and C.
  32. Aurangabad, “Detection of Negative Tan Delta
  33. ( Dissipation factor ) in Condenser Bushing : A
  34. Review,” Int. J. Res. Eng. Appl. Manag., vol.
  35. , no. 06, pp. 203–205, 2020.
  36. S. R. Pertiwi, U. Latifa, R. Hidayat, and I.
  37. Ibrahim, “Analisis Kelayakan CVT (Capacitive
  38. Voltage Transformer) Phasa S Bay Busbar 2
  39. kV di GI PT. XYZ Indonesia,” Techné J.
  40. Ilm. Elektrotek., vol. 20, no. 1, pp. 35–42,
  41. , doi: 10.31358/techne.v20i1.259.
  42. F. A. F. Badaruddin, “ANALISA MINYAK
  43. TRANSFORMATOR PADA
  44. TRANSFORMATOR TIGA FASA DI PT X,” J.
  45. Teknol. Elektro, vol. 1, no. 20, p. 220, 2000,
  46. [Online]. Available:
  47. https://repository.up.ac.za/bitstream/handle/2
  48. /64096/LaPlaca_How_2018.pdf?sequenc
  49. e=1
  50. L. Abidin, “View of Pengujian Dissipation
  51. Factor pada Transformator dengan Jumper
  52. dan tanpa Jumper Bushing.pdf.” pp. 189–196,
  53. P. Seminar, N. Nciet, and N. Conference,
  54. “ANALISA TAHANAN ISOLASI
  55. TRANSFORMATOR 3 DI PT. PLN (Persero)
  56. GARDU INDUK 150 KV Pati,” Pros. Semin.
  57. Nas. NCIET, vol. 1, no. 1, pp. 141–149, 2020,
  58. doi: 10.32497/nciet.v1i1.72.
  59. P. Akhir et al., “ANALISIS PENGUJIAN
  60. TANGEN DELTA PADA TRANSFORMATOR
  61. DAYA 5 PADA GARDU INDUK SENTUL
  62. KV ANALISIS PENGUJIAN TANGEN
  63. DELTA PADA TRANSFORMATOR DAYA 5
  64. PADA GARDU INDUK SENTUL 150KV,”
  65. M. F. Robbani, D. Nugroho, and G. Gunawan,
  66. “Penentuan Kelayakan Tahanan Isolasi Pada
  67. Transformator 60 MVA Di Gardu Induk 150 kV
  68. Tegal Dengan Menggunakan Indeks
  69. Polarisasi, Tangen Delta, Dan Breakdown
  70. Voltage,” Elektrika, vol. 12, no. 2, p. 60, 2020,
  71. doi: 10.26623/elektrika.v12i2.2721.
  72. D. I. Hajar, “Evaluasi Kondisi Isolasi Pada
  73. Current Transformator Bay Unit Trafo 1 Gi
  74. Cikupa 150 Kv,” 2020.

Most read articles by the same author(s)